Minggu, 22 November 2015

Breeding Strategies for Improving Shelf Life in Tomatoes

Tomato is one of many plants that have evolved an “edible fruit” strategy for seed dispersal.  Mature seed is encased in a fruit designed to be attractive for consumption by fruit eating animals.  Seed dispersal occurs when the consumed seed passes safely through the digestive tract and is deposited with feces on the soil some distance from the mother plant.  In tomato the fruit ripening process involves several steps designed to enhance attractiveness for consumption:  an increase in fruit sugars, acids and flavor-enhancing aromatic compounds that greatly improve tastiness of the fruit; fruit softening to a more edible texture; and obvious fruit pigmentation designed to signal to passing animals that the fruit is fully ripe and ready to eat.  These features were preserved during the domestication of tomato and the more recent development of tomato as one of the world’s most important fruit/vegetable crops.

One of the modern dilemmas in tomato production and breeding relates to managing post-harvest losses associated with the modern agricultural practice of concentrated fruit production in one area and fruit consumption in another place (and time).  Ripe fruit is easy to damage in transit and deteriorates relatively quickly.  Picking mature green (MG) fruit for shipment and gassing with ethylene at a distant delivery point to “ripen” the fruit solved the problem of damage in shipping, but comes with an unfortunate sacrifice in flavor.  As an alternative to this practice plant biologists and tomato breeders have looked at various genetic variants (mutations) in genes controlling the ripening process, and examined how these novel alleles might be deployed in the development of varieties with great flavor and enhanced shelf life.  In this post I’ve tried to summarize the current understanding of this field and share some of our related breeding efforts.

Tomato Fruit Development (from Alba et al., 2005)
 

The Ripening Process
Tomatoes are a climacteric fruit, which means that the plant hormone ethylene is required for fruit ripening.  Ethylene is rapidly produced in tomato fruit at the breaker (BK) stage and drives a series of reactions that together define the fruit ripening process.  During normal ripening there are simultaneous and independent processes that lead to 1) accumulation of sugars, organic acids and volatile organic compounds influencing flavor, 2) conversion of chloroplasts to chromoplasts and the synthesis and accumulation of carotenoid pigments and 3) softening of the fruit.  In a perfect modern tomato, ripening steps 1&2 proceed normally and step 3 proceeds at slow rate – allowing the tomato fruit to keep peak flavor, color and texture for an extended period of time.

ESL, or extended shelf life, is a term describing a collection of traits that together extend the potential time between picking of fully ripe or nearly fully ripe fruit, and the deterioration of fruit quality.  Fruit quality deterioration is usually associated with fruit softness/undesirable texture and fruit rotting.  Taste panels have identified fruit texture as an important determinant in consumer preference, and soft or mealy fruit is a major “turn-off”.  Deterioration in fruit firmness/texture is generally associated with a ripening related spike in polygalacturonase (PG) and other enzymes that degrade fruit cell wall polysaccharides. Thus, a decline in fruit firmness typically coincides with dissolution of the middle lamella and hemicellulosic/pectic cell wall polysaccharides, thereby undermining the polysaccharide network that hold cells together in the fruit pericarp.  FlavrSavr tomato, the commercially unsuccessful GE trait introduced by Calgene in 1985, was designed to specifically suppress PG activity in ripening tomatoes.  Recent research has also implicated cuticle composition and architecture as traits influencing ripening-induced fruit softening (Saladie et al. 2007 and Kosma et al. 2010).  The cuticle has long been implicated as a contributor to fruit strength, and cuticle structure changes during the ripening process.  Kosma et al, show that during the ripening process ESL mutants generally have cuticles with mechanical properties significantly different than the wild type – likely contributing to ESL per se.

It should be noted that independent of the several novel mutant alleles described below, there are significant genetic differences in firmness in tomatoes.  Unfortunately there are a couple of studies that report fruit firmness at harvest is not well correlated with the maintenance of fruit firmness postharvest.  We have found that pericarp thickness, relative to size of the locules, is a heritable trait that significantly impacts firmness per se, and appears in many cases to be associated with improved shelf life (see photos below).  This combination of traits is common in many newer commercial hybrids.

Firm when ripe phenotype

There are several mutations in key structural or regulatory tomato genes that affect the ripening process.  These genes generally either inhibit ethylene synthesis and/or modify ethylene’s downstream effects on specific biochemical processes related to fruit ripening.  To better understand climacteric fruit ripening per se, and to examine the potential utilization of these mutant alleles for delayed ripening/extended shelf life – tomato scientists have characterized several mutant alleles associated with a delayed ripening phenotype.  Several key ripening mutants are described in detail below.

Key genetic mutations affecting tomato fruit ripening
rin = ripening inhibitor.  The RIN gene is a transcription factor that acts as a master regulatory gene controlling numerous genes and pathways associated with tomato fruit ripening.  The rin loss of function mutant is a recessive allele that both represses genes associated with ethylene synthesis and modifies downstream processes associated with the normal ripening process.  Specifically rin modifies expression of other transcription factors associated with fruit ripening (e.g. NOR); prevents normal fruit pigmentation by suppressing synthesis of Phytoene synthase (PSY), the primary enzyme regulating flux into the carotenoid pathway (see Genetic Control of Fruit Color in Tomatoes); suppresses key steps in the accumulation of sugars, organic acids and aromatic compounds associated the improved flavor in ripe tomato fruit; suppress enzymes (e.g. polygalacturonase = “PG”) associated with breakdown of cell wall polysaccharides that lead to ripening-related fruit softening; and modifies cutin and fruit wax content and composition.   The rin/rin homozygote plant produces fruit that never fully ripen and have much firmer fruit with a significantly longer shelf life (see photo below).  The lack of normal color and flavor significantly limits commercial potential of rin/rin plants.  In the heterozygous condition rin/+ plants produce fruit with near normal fruit color and flavor, and shelf life that is intermediate between rin/rin and +/+ (wild type) plants. F1 hybrids with the rin/+ genotype and extended shelf life have been widely commercialized and are a key driver in the recent availability of “vine ripened” tomatoes in grocery stores.  The extended shelf life allows picking at or near the full ripe stage when flavor is near peak, and remaining firm for an extended period of time for shipping to distant locations.

We have been developing and testing new rin/rin inbreds and rin/+ hybrids for the last few years. 
Striped rin/rin cherry
Although rin/rin lines generally have very low fruit sugars, there are differences in sugar levels between rin/rin lines.  The sweetest rin/rin lines generally produce the sweetest rin/+ hybrids, though this is also heavily influenced by the non-rin parent in the hybrid.  Lycopene levels in rin/+ hybrids is a little lower than wild type (orange/red vs dark red), but normal red color can be restored in ogc/ogc crimson types (e.g. Mountain Magic).  Enhanced shelf life in rin/+ hybrids appears to be influenced by rin per se, but also on the genetic background of the rin and wild type parents, specifically those genes influencing fruit firmness.  Ripening is a little slower with rin/+ hybrids, adding perhaps 5-7 days.  We are making great progress on rin/+ hybrids and it appears possible to combine a significant improvement in shelf-life with exceptional flavor in fruit in a wide range of colors, shapes and sizes. 

Fruit at BK +7 stage (7 days after breaker stage in the WT)


                      Wild Type                     rin/rin                        nor/nor
Photo by Martel, 2010

nor = non-ripening.  The NOR gene is an unrelated transcription factor that also serves as a master regulator of fruit ripening in tomato.  The recessive loss of function mutant allele nor has been widely studied.  The nor/nor homozygote has a very similar phenotype to rin/rin, and nor/+ hybrids also have much restored color and flavor with extended shelf-life – though reports in the literature suggest less color and flavor and longer shelf life in nor/+ relative to rin/+.  The specific mechanisms for modification of ripening in nor mutants is less understood than with rin – but like RIN, NOR helps regulate multiple genes and pathways important in tomato fruit ripening.  Commercial nor/+ hybrids have been commercially successful, though probably less so than rin/+.  Note that the next few mutants described here, alc and dfd, are thought to be allelic to nor (i.e. independent NOR mutants) with subtle but significant differences in ESL phenotypes.

alc = alcobaca.  The Spanish tomato landraces Alcobaca, Penjar and Tomàtiga de Ramellet are generally “long keeping” types with much delayed fruit deterioration.  These landraces have been selected for hundreds of years for local adaptation to a dry climate and for fruit that will have acceptable quality for months after harvest.  The photo below shows a typical fall/winter storage strategy employed in the region – fruit are hung in small bunches for medium term storage.  Note the term tomatiga de penjar means tomato for hanging.  There is a single recessive allele “alc” associated with the slow ripening phenotype.  The alc allele is believed to be another mutation at the NOR locus.  Fruit from alc/alc plants have significantly lower levels of endogenous ethylene, suppressed polygalacturonase activity and firmer fruit.  Fruit harvested at the onset of ripening mature to an orange color, and those left on the plant until full ripening have normal red color.  The landraces listed above are all alc/alc and can remain firm for several months, though there is wide variation for this LSL trait within local populations – suggesting alc + other factors are at play.  The ESL trait associated with alc also appears to be subject to the level of water stress during fruit production – with generally enhanced ESL under more arid production conditions.  Hybrids that are heterozygous for alc (alc/+) have shelf life intermediate between +/+ and alc/alc, but have more normal fruit color and flavor than either rin/+ or nor/+, and thus seems to be another interesting candidate gene/all ele for the extended shelf life/excellent flavor combination.

Alcobaca type tomatoes hung for winter storage

                                                 
Effect of alc on fruit deterioration

dfd = delayed fruit deterioration.  The dfd trait was first found in certain ecotypes growing in the southern Mediterranean.  The literature suggests that dfd is a partially dominant mutant allele of NOR, and may indeed by identical to or a slight variation to alc.  DFD controls cuticle composition and leads to decreased cell water loss, increasing cell turgor (firmness) per se, and decreasing fruit water loss generally during ripening.  Normally as tomato fruit ripen the cuticle weakens and grows less resistant to penetration.  Fruit of dfd plants require significantly more force for cuticle penetration than those from wild type varieties, and do not exhibit a normal progressive weakening of the cuticle during ripening.  Fruit from dfd plants exhibit the normal ripening-induced fruit cell wall breakdown and cell separation typical of wild type, but show substantial swelling of pericarp cells during the ripening that is atypical, with a ~4x increase in cell size vs wild type in ripe fruit, likely related to increased cell turgor.  There is also less fruit water loss in dfd vs wild type ripening fruit – another contributing factor to improved fruit firmness.  Increased cell turgor, decreased fruit moisture loss and increased cuticle strength all appear to be related to changes in cuticle wax content and composition in dfd vs wild type.
 
Unlike rin, and nor, dfd’s affect on fruit firmness/LSL was independent of normal fruit coloration and ripening-related accumulation of sugars and organic acids.  Futhermore dfd/dfd plants maintained firmer fruit without impacting expression of genes, such a PG, involved in ripening induced cell wall degradation (unlike alc).  The dfd mutant appears to represent a very novel approach for ESL that may be used in combination with other ESL traits to enhance shelf life in tomato hybrids or O.P. varieties.

Changes in Fruit Coloration after Breaker Stage

Davis EFS F2 segregate 
EFS – extended field storage.  Several new processing type tomato hybrids contain the extended field storage (EFS) trait, which allows for a longer window for field harvest, creating more flexibility for tomato processers.  The alc allele (or perhaps a related NOR mutant) may to be at least partially responsible for this modified ripening phenotype.  While driving near Davis, California in early September 2014, I stopped to pick up a couple of tomatoes that had fallen off a truck on the way to processing.  They had bright crimson flesh and a rich tomato flavor.  In a F2 growout in 2015 we found one F2 plant that appeared never to fully ripen on the vine, but had a bright pink center (see photo).  This combination of a lack of obvious pigmentation on the fruit surface with bright lycopene pigmentation of the fruit pericarp seems atypical of all the ripening mutants described above, and remains a mystery.  We presume this plant to be homozygous for one or more recessive ripening mutants and made several F1 crosses to elite FLF breeding lines.  F2 progeny from winter growouts will be evaluated in 2016.  This was one of the oddest discoveries in our 2015 nurseries and I expect we will learn quite a bit more next year.  In my literature review for this paper I found a one sentence reference to a long keeping variety that appeared to ripen from the “inside out” – perhaps a related phenomenon?

Fruit Shelf Life of Nine LSL Tomato Hybrids (Yogendra et al. 2013)

Nr = never ripe and Gr=green ripe.  These are dominant, gain of function mutations at independent loci, that each results in reduced ethylene responsiveness in tomato fruit tissue.   The ethylene insensitivity in both Gr and Nr have a negative impact on seed germination and seedling vigor and completely prevent normal fruit ripening.  Negative plant and fruit phenotypes prevent any commercial use of these mutant alleles.

Summary
Although the mutant alleles rin, nor and alc generate a somewhat similar ESL phenotype in plants heterozygous for these alleles, they are independent loci and have different modes of action. With all three alleles, extended shelf life is associated with later maturity, and with rin and nor also associated with decreased pigmentation (see photo above).  The mutant alleles of these three genes have a similar effect on extending shelf life, and the maintenance of firmness is due both to the mutant alleles per se, and the background genotype of both the male and female parents.  We have found that a rin/+ genotype in a firm fruited background can extend shelf life for over two weeks.  In such a case a fruit picked fully ripe can stay crisp and firm on the countertop (or in transit to local or distant markets) for at least 14-21 days.  Since several of the key aromatic compounds impacting flavor are directly derived from lycopene and other carotenoid pigments, in theory one might expect that the lower carotenoid pigment content of rin/+ hybrids might lead to lower flavor.  However by selecting ruthlessly for flavor in parent lines, we have been able to identify rin/rin parents that contribute high flavor to rin/+ hybrids. 

It is currently unclear how closely related are the NOR mutants alc, dfd  - and possibly EFS.  EFS is now widely deployed in commercial processing hybrids grown in California, though the ESL phenotype and mode of action appear to be treated as trade secrets.  The dfd mutant is also somewhat of a mystery, perhaps due to a Cornell patent filing on a specific dfd sequence – in the patent they do describe this as a NOR mutant derived from a Mediterranean ecotype.  To complicate matters more a Davis, CA company Arcadia has patented an induced mutation in NOR (reference), which they claim to be an improvement on the naturally occurring nor loss of function mutant.  It is too early to know how similar the Arcadia mutant might be to alc, dfd or EFS.

The primary use of extended shelf life (ESL) tomato hybrids will likely be for medium/large size grower (field or protected culture) producing for distant markets.  Picking an ESL hybrid at or just before full ripening (in the marketplace = vine ripened) then packing and shipping, can be a consumer and taste-friendly alternative to the traditional “green and gassed” model.  We think ESL types will also be well suited to smaller producers selling in more local markets.  These types could be picked less frequently, and once picked, be much less prone to post harvest losses.  It appears there may be several different gene/allele options for ESL, with varying efficacy, ease of use, and freedom to operate.  We think ESL will be an increasing important trait for fresh market tomatoes, with perhaps evolving breeding strategies for optimization of the trait.  We will build on our early success with rin, and continue to follow and explore the other options described here.  Our multi-year effort in selecting for fruit firmness and flavor per se is paying off – deployment of rin or one of the NOR mutants will likely require a firm fruit background for optimization of ESL, and a high flavor background will likely be needed to counter the delayed ripening effect of rin/+, nor/+,  or alc hybrids.


Gardening During Flood and Drought In Dallas/Fort Worth

The Dallas/Fort Worth Area has extremely unpredictable rainfall.  Months of flood are followed by months with almost no rain.  Just over the last 18 months, the lowest rainfall amount was 0.06 inches in the month of September 2014, but the highest was 16.96 inches in May of 2015, more than 280 times as much!  After that washout in May, July and August of 2015 received less than an inch of rain each!  This was followed by a wet October, with almost 10 inches of rain.  How can anyone garden in such an environment - where almost daily watering is required some months and root washout happens in others?

So, the Dallas/Forth Worth area has variable rain, sometimes with not enough rain and sometimes with floods.  Also, the time when trees and garden plants could benefit most from water (July and August) due to the increased sun, the least rainfall is available.  In scientific terms, water becomes the limiting factor in the height of the growing season.

Is there anything that can help prevent flooding of plants during heavy rains, but also supply water to plants during droughts?  Could this device or system be automatic, rather than relying on gardeners to take time out of their busy schedules to water plants during droughts and cover the soil during heavy rains?  Finally, could this device collect and save water during rainy periods for use during dry periods?  The answer to all three of these questions is yes - and the device is the Groasis Waterboxx PlantCocoon®, or Waterboxx for short.

The Waterboxx is a self refilling water battery for plants.  It is placed around a smaller plant (at least 6 inches tall and with a stalk less than 2 inches in diameter) right after planting.  The Waterboxx is then filled with 4 gallons of water.  This water slowly trickles out, about 50 mL or 10 teaspoons a day, to the roots of a growing plant, via a small wick.  The Waterboxx has a special lotus leaf inspired lid, which allows it to catch dew, transpiration moisture from the plant, as well as rainfall, and store it for later use.  The Waterboxx, although 10 inches tall, is filled with less than 4 inches of rain and has enough water stored (with average water outflow of 50 mL/day) for 300 days without any precipitation.

The Waterboxx also prevents plant over-watering by directing heavy rains away from the roots of the plant.  Once full, the Waterboxx funnels all excess water off to the side of the plant (10 inches away from the stalk).  This channeling away of excess water prevents root washout and also prevents the splitting of tomatoes and melons.

From Groasis - A cross section view of the Waterboxx - water is collected by the tan lid, funneled down the siphons (shown in red here), stored in the green reservoir (which holds 4 liters), and slowly released through the white wick to the roots below. 

The Waterboxx can easily accommodate two tomato plants, two to four pepper plants. two zucchini plants, or one melon or winter squash.  You can see Waterboxx gardening results here.  With more than one plant, an extra wick can be inserted to give more water (which will decrease the length of time the Waterboxx has reserve water, halving it roughly for every doubling of the number of wicks).  

Has the Waterboxx been used in drought conditions before?  Yes.  The Waterboxx was used to grow tomatoes in the height of the California drought in 2015.  Tomatoes planted in Sacramento County, California received no water after planting, and got less than a quarter inch of rain for three months of summer, but still managed to produce over 40 fruits from one plant.  You can see the results of this below.

16 weeks' growth of a tomato plant in Sacramento County California - all with no water after planting.  

What about flood conditions?  How well does the Waterboxx work in flood conditions?  Well, in the same year (2015) that the Waterboxx was growing full sized tomatoes in California, it was growing Roma and cherry tomatoes in Indiana, which had one of the wettest springs and the wettest July on record.  Over 13 inches of rain fell around Indianapolis in July, which would have both washed out most tomato roots and caused most fruits to split.  With the Waterboxx, however, this did not happen. We see no tomatoes split and a bountiful harvest just beginning below. 

Roma (left) and cherry (right) tomatoes growing with the Waterboxx during an extremely wet July, with over 13 inches of rain.  This photo, taken July 21, shows no split tomatoes and an excellent crop - all because the Waterboxx prevents overwatering even in heavy rains.

The Waterboxx works great in a standard 4'x4' raised bed, but also works in traditional garden rows. The consistent water the Waterboxx provides allows the plant to reach their maximum height, while also sparing gardeners hot evenings of watering the garden.   The Waterboxx can also be used to grow trees without any watering after planting in difficult areas like Dallas/Fort Worth.  

The Waterboxx can help residents of the Dallas/Fort Worth area to stop spending hours in the hot summer sun watering their garden plants and just enjoy the fruits of their labor.  If you want to try gardening with the Waterboxx and stop worrying about too much or too little rain, you can find out more here or buy the Waterboxx here.  

We would love to read your comments below.

Sabtu, 14 November 2015

Water Tomatoes Only Once In Central California Drought

How much can a tomato plant grow if watered only once, at planting?  A great deal, if it is planted with the Groasis Waterboxx PlantCocoon®.  Tony Palumbo of Sacramento County, California planted a tomato with the Waterboxx in Folsom in the great drought of 2015.  He provided water for it and the Waterboxx (about 4 gallons) only at planting and then never watered it again.
Week 1 - the tiny tomato is barely visible - but the Waterboxx is designed to allow light to reach it.
The Waterboxx works by collecting occasional rain and more frequent dew, and actually makes condensation more likely as the plastic lid cools down at night.  It doesn't rely on electricity or running water, just nature's genius like the lotus leaf (which inspired the lid).

Week 2 - the tomato plant has more than doubled in size
Because the need for watering is greatly reduced or completely removed with the Waterboxx, the most important input for the plant's growth is now sun.  Central California had that in excess during the summer of 2015, with less than one quarter of one inch of rain during this time.

Week 3 - tomato plant more than doubled in size in one week - with the Waterboxx providing support for the base

The Waterboxx has a four gallon (15 liter)  reservoir, and releases only about 50 mL (10 teaspoons) of water a day through a small wick in the bottom of the reservoir.  This gives approximately 300 days of water to the average plant (although water loving plants may have faster water use).

Week 4 - the first small tomatoes are appearing, very quickly because of the consistent moisture and excellent sun exposure in Central California
It takes only 4 inches of rain total to completely refill the Waterboxx, an amount almost every location in the U.S. gets.  For this reason the Waterboxx was initially used to grow trees - but it works so well for the garden that it is now being used to grow many garden plants.

Week 6 - the single tomato plant already needs three supports because it has grown so large so quickly

The Waterboxx works great for full size tomatoes, but also for Roma and cherry tomatoes (other growers have grown almost 1000 Roma (Juliet) tomatoes and >1500 cherry tomatoes with the Waterboxx).  The Waterboxx can also be used for peppers, melons, eggplant, zucchini, winter squash, and pumpkins.

Week 7 - The first tomatoes are almost ready to harvest
Gardeners can also put more than one vegetable plant per Waterboxx - but this will require extra wicks and some supplemental watering in very dry climates.

Week 16 for Waterboxx planted tomato (left) - 14 produced, 40 tomatoes - left  (traditional with DAILY watering) shows week 13 - 0 produced, 0 tomatoes but some buds
A traditional, non-Waterboxx tomato was planted next to the Waterboxx tomato but three weeks later.  This tomato required watering every single day - but still didn't come close to the Waterboxx tomato in terms of size or fruit produced.

The Waterboxx is transforming gardening in hot climates and during droughts.  You can see more examples of gardening with the Waterboxx - this time in southern California  - here.  You can buy the Waterboxx here or learn more about the Waterboxx here.

16 weeks growth of the Waterboxx tomato plant - all without any water after planting in the Great California Drought - the Waterboxx is truly changing gardening


Kamis, 12 November 2015

Growing Pecan Trees Without Watering In Texas

The pecan tree, Carya Illinoinensis,  is of course the Texas state tree.  This tree is large, stately, and can be very prolific in its nut production.  There are varieties of pecan that are well suited for every part of Texas, seen below.


Varieties of pecan for different regions of Texas - from Aggie Extension Service - an excellent source of information about pecan growing, found here

 The pecan tree, once established, is drought tolerant. Unfortunately, the pecan tree can be very slow growing due to its need to develop a significant root system.  The pecan's tap root, actually, is what makes it so resistant to drought, but also what makes it so hard to become established.

There is a device that will help in establishing pecan trees, provided the purchased trees are not yet too large.  (Note: always buy grafted pecan trees if you want nuts in your lifetime - our recommended sources are Willis Orchard and Stark Brothers).  A device called the Groasis Waterboxx PlantCocoon (hereafter just "the Waterboxx"), provides consistent moisture to the long tap root of the growing pecan tree, all without irrigation or electricity.  The Waterboxx works as explained in the video below.



Pecan trees can be planted with the Waterboxx as follows.  A deep, narrow hole is dug for the pecan roots - just as deep as the pecan roots and no deeper.  It is easiest to use an auger if doing this with many trees.  If an auger is used, be sure to scrape the sides of the hole with a serrated edge (a soil knife is best) to loosen the dirt there and prevent root spiraling.  Nearer to the surface, a wider but shallower hole, 20 inches across and approximately 5 inches deep, is dug.  Approximately 10 gallons of water with any desired fertilizer is then added to the hole.  This was is allowed to trickle down over the next few hours so no water is left in the hole when the plant is inserted.  Once all water has percolated into the soil, the pecan with its large taproot is inserted into the deep central hole.  This is then filled with soil - either native or potting soil.  You can also insert mycorrhizae (helpful fungus to absorb water and nutrients) in this soil if you like. The assembled Waterboxx is then inserted over the pecan - the central 'Figure 8' opening allowing space for the trunk of the pecan tree.

A schematic view of the Waterboxx

The Waterboxx is then filled with about 4 gallons of water.  This water, stored in the green reservoir, will be replenished with morning dew, transpiration moisture from the tree, as well as occasional rainfall.  In fact, it takes only 4 inches of rain to completely refill the Waterboxx (even though the Waterboxx is 10 inches tall).

The pecan tree will now be completely self-sufficient regarding water for at least the next year.  You only need to visit the tree to make sure it is not growing too fast (as you will need to eventually remove the Waterboxx).  You want to remove the Waterboxx (by pulling it straight up over the tree) before the tree crown gets too large to fit through the figure 8 central opening - usually about one year after planting.  The pecan tree by then should have a deep tap root, resistant to almost all drought. The pecan tree potentially may not need manually watered ever again.  If you are growing for commercial reasons, a irrigation system may eventually be required to get the best nut harvest depending on your part of Texas and average rainfall amounts.

The Waterboxx can be reused after the first year (for up to ten years) so many successive plantings of pecans or other trees can be done.  You can buy the Waterboxx here.

We would love to read your comments below.

Sabtu, 07 November 2015

The Impossibility Of Cutting Greenhouse Emissions

The news media has been abuzz recently with a new genre of news story - carbon fraud.  The German automaker Volkswagen has admitted to purposely designing software to make its engines appear less polluting, both for diesel and for gasoline engines.  Now it turns out that China, either intentionally or not, has dramatically understated how much coal it has burned over the last 15 years.  The European Union has a "renewable" energy mandate that is causing it to cut down American forests for fuel - producing more carbon emissions than if European coal was burned!  The stories of carbon fraud are becoming more numerous as the incentive to lie about emissions become stronger.  Unlike something like deforestation of the rainforest, there is no satellite or other system capable of monitoring carbon emissions.  We can measure carbon in the atmosphere (see below), but we can't really tell its source with any real accuracy.

Carbon dioxide in the atmosphere as measured by the NOAA, increasing steadily for the last 50 years with the sawtoothed shape because of absorption by plants.
What are we to make of this carbon cheating?  Well, there is an economic parable called 'Tragedy of the Commons' that might be illustrative.  In medieval England, many small landowners of a village, all of whom owned livestock, owned land surrounding a large grassy area called a commons.  These small landowners were of course allowed to graze their livestock on their own land, but were also allowed to have their animals graze without restriction on the commons.  What happened with this arrangement?  The obvious - the villagers all grazed their livestock on the commons before letting their livestock on their own private land.  Because of this, the commons was soon ruined, turned to a grass-less mud filled wasteland as grass was pulled up by the roots, while the privately owned land remained pristine.

Say that everyone in the village realized the problem and came to an agreement - you can only graze your livestock one day a month on the unfenced, unguarded commons.  Some villagers would be responsible and abide by the agreement, but some would invariably cheat - perhaps taking their livestock to graze at night or when others were away.  The result would be the same - a muddy, ruined commons.  The only way to stop the cheating would a large wall around the commons (not practical) or an incredible police state monitoring the villages and their flocks at all time.

The utility of this parable to greenhouse emissions is obvious.  The Earth's atmosphere is in every sense a 'commons' - every nation and every person has access to it.  We cannot restrict a country from it for abuse or deceit.  Eventually, regardless of how little in greenhouse gases we emit as individuals or even as a nation, our work can be completely undone by others.  What good would it have done in the above parable for one landowner, seeing the ultimate fate of the commons, to only graze his animals there once a month? None - his sacrifice would have been meaningless in the context of everyone else's abuse.

So, what can be done?  Is the world doomed to much higher greenhouse gas concentrations because the atmosphere is a common area, with no real restrictions or controls?  No!  While the atmosphere is a commons, land is not and is frequently privately owned.  Is there anything that can be done on land to pull carbon out of the air?  Yes - we can plant giant, long lived trees - we can plant sequoias..

Giant sequoias, Sequoiadendron giganteum, the largest tree and the largest living thing on earth, once covered much of the world.  They thrived on the higher carbon dioxide concentrations available then as well as warmer temperatures, two conditions we are likely to see replicated soon..  These trees are very fast growing and can still, if planted correctly, be grown in almost all temperate areas.

What is more, the largest of these trees, called General Sherman, is so large that is has sequestered over an average American's lifetime of carbon emissions - over 2.2 million pounds of carbon.  Sequoias also live for thousands of years, with many now alive growing at the time of Christ.  This longevity means they will to continue to store as well as continuously sequester carbon for centuries.


We tried to plant these trees many times here in the Midwest without success before discovering a device that could water, nurture, and protect the tree without our intervention.  This device, the Groasis Waterboxx PlantCocoon, is shown with a sequoia tree below.

Two years' growth of a sequoia with the Groasis Waterboxx PlantCocoon.  No water was manually added to the Waterboxx or the tree after planting - not once - and the tree has thrived after the Waterboxx was removed.  
We have had a one hundred percent success rate planting sequoias with the Waterboxx here in Indiana, and plan to continue planting elsewhere.  Can our success be replicated?  Yes!  If every set of grandparents came together and planted one sequoia tree each for every new child in their family (for a total of two trees per new child), we could one day see all carbon emissions offset by growing trees.  If more than two trees were planted per new child, we could see America's net carbon emissions decrease, even if we couldn't directly measure it.  What's more, sequoias tend to grow faster as they age.  Sequoias are well adapted to survive common threats like forest fires and have few pests.  Sequoias can do what no other tree can - pull carbon reliably from the atmosphere at an increasing rate, and store it for thousands of years.

Companies, countries, and even continents will continue to lie and mislead about their carbon emissions.  Future "climate agreements" will just make this mendacity more likely as the incentive to cheat increases.  As this happens, a  person's individual carbon emissions will become meaningless in the face of widespread cheating.  We can decrease total carbon dioxide in the atmosphere only by removing it from the atmosphere - and the best way to do this is by planting long lived and massive trees like sequoias.

If you want to buy a small sequoia tree, we recommend Giant-Sequoia.com.  If you want to take the effort and try to plant from seed, we recommend this site.  To purchase a Waterboxx to grow a sequoia here in the United States, visit Dew Harvest at www.dewharvest.com.

We would love to read your comments below.